数学模型在滨海城市水资源综合规划中的应用.doc

返回 相关 举报
数学模型在滨海城市水资源综合规划中的应用.doc_第1页
第1页 / 共13页
数学模型在滨海城市水资源综合规划中的应用.doc_第2页
第2页 / 共13页
数学模型在滨海城市水资源综合规划中的应用.doc_第3页
第3页 / 共13页
数学模型在滨海城市水资源综合规划中的应用.doc_第4页
第4页 / 共13页
数学模型在滨海城市水资源综合规划中的应用.doc_第5页
第5页 / 共13页
点击查看更多>>
资源描述
1 数学模型在滨海城市水资源综合规划中的应用 王士武 陈 雪 胡 玲 耿兆铨 浙江省水利河口研究院 杭州 310020 摘要 作为一种有限的自然资源 水资源对于保持滨海城市经济繁荣 社会稳定乃至国家的可持续 发展都至关重要 本文通过对滨海的温州市所辖的瑞安市的水资源综合规划实例 结合在工作过程 中所用到的诸多数值计算 阐述数学模型在水资源规划 保护与管理中的作用 从水文学的降雨径 流关系模型和诸多的统计预测模型 河网的水流水质模型 入海江河的非恒定水流模型 到区域的 水资源优化配置 数学模型均有很大的优势 具体应用可以逐步地从简单到复杂 从单一数模到组 合数模 数学模型固有的低成本 快捷有效自不必说 其计算成果的数字化经后处理 容易达到可 视化 这在水资源的优化配置 调度管理中非常有效 通过网络传输 对上级领导和决策机构的信 息化调控管理 无疑也是十分重要的 关键词 数学模型 滨海城市 水资源 综合规划 可持续发展 Application of Mathematical Models in Water Resources Integrated Planning Shiwu Wang Xue Chen Ling Hu and Zhaoquan Geng Zhejiang Institute of Hydraulics Estuary Hangzhou 310020 P R China Abstract As a finite natural resource water resources play a key role in keeping prosperous economy stable society and sustainable development Based on applying mathematical models to the projects of water resources integrated planning in two coastal cities it is illuminated that mathematical models are important for water resources planning protection and management of coastal cities in this paper Mathematical models for example rainfall runoff models statistic and forecasting models water flow and water quality models for river network simulating estuary unsteady flow models and optimal allocation models of water resources in a region and so on have many advantages It goes without saying that it cost less and little time to apply mathematical models The results can be visualized conveniently on computer screens via digital processing Mathematical models are very effective for water resources optimal allocation dispatching and management and can provide important information by the way of Internet for policymakers and research organizations Key words mathematical models coastal city water resources integrated planning sustainable development 王士武 1965 年 2 月生 男 浙江省水利河口研究院水资源水环境所副所长 高级工程师 主要研究方向为水资 源和农田水利 2 前言 随着我国经济社会的迅速发展 工业化 城镇化进程加快 各类基础设施建设规 模不断扩大 在国民经济迅速发展的同时 生态环境和自然景观也受到了不同程度的 损害甚至破坏的代价 面对日益严重的水资源问题 党中央提出了 以人为本 的战 略方针 先后陆续提出了 资源水利 可持续水利 人与自然和谐相处 的治水 理念 为此 国家发改委 水利部联合相关部委 向全国各省 自治区 直辖市发出 号召 1 2 尽快开展水资源综合规划工作 作为一种有限的自然资源 水资源对于保持沿海城市经济繁荣 社会稳定乃至国 家的可持续发展都至关重要 沿海地区所占的国民经济与社会发展权重众所公认 但 沿海地区人口的过度集中和经济的迅猛发展 必然产生大量的工业废水和城市污水 水多 水少 和 水脏 这三大问题 严重制约着沿海城市社会和经济的发展 水脏 问题尤其突出 具体表现为地表水污染 地下水资源破坏 区域生态系统受 损 土壤的退化等诸多环境问题 水危机的性质不同于能源危机 能源短缺可以通过 国际市场大量进口得以缓解 而水资源的区域分布不均匀性 时程分布不均匀性和不 可替代性决定了应对水危机任务的长期性和艰巨性 所以滨海地区水资源的保护与管 理是当前各级研究机构和政府部门所面临的重要任务 1 研究背景 国际上的水资源研究起始于 20 世纪 50 年代 1953 年美国陆军工程师兵团为解决 美国密苏里河流域多座水库的运行问题 设计了最早的水资源模拟模型 1960 年 Emergy 和 Meek 为解决尼罗河流域水库规模和运行调度问题也构造了专门的模拟模型 其后 随着系统分析理论和优化技术的引入以及计算机技术的发展 水资源系统模拟 模型和优化模型的建立 求解和运行的研究工作得到了不断提高 国内水资源研究起始于 20 世纪 60 年代 以水库优化调度为先导 20 世纪 80 年代 以华士乾为首的研究小组对北京地区的水资源采用系统工程方法进行了研究 并在 七五 攻关项目中加以提高和应用 80 年代后期新疆水利厅会同有关部门进行了 新疆水资源及其承载能力和开发战略对策 的项目研究 随后水资源规划的研究在 全国各地区各流域广泛展开 综观早期的水资源调配理论 多数是 以需定供 对环 境保护重视不够 强调节水而忽视高效 重视缺水地区的水资源配置水量而忽视水资 3 源质量 从而影响了区域经济的发展和水资源的可持续利用 早期水资源研究的数学 模型较为单一 大多作了人为的简化 水资源领域的数学模型研究始于 90 年代 随后 数学模型在水资源领域的研究成果在涉水科学期刊 诸如 水利学报 中国水利 水文 水资源研究 等全国性和地方性水利科技上陆续有所报导 随着人类对自然认识的不断深入 可持续发展 人与自然和谐相处 等理论相 继提出 水资源保护和优化配置的理论不断完善和创新 注重生态环境 保护水资源 质量 逐渐成为人们的共识 从此水资源管理向着更科学的方向发展 即协调好资 源 社会 经济和生态环境的动态关系 确保实现社会 经济 环境和资源的可持续 发展 2 多种类数学模型 2 1 降雨径流关系模型 进行降雨径流关系分析的基础是某一区域的降雨和相应的实测径流量 在这种情 况下 径流系数统计分析模型较常采用 分析各时段径流观测站的径流量及其相应集水面积上的面雨量 采用回归技术进 行分析计算 得出径流系数与降雨量的统计关系 经分析可以建立三种类型的降雨径 流关系模型 分别为 1 bap 2 ln 3 式中 径流系数 降雨量 mm p 回归系数 ba 采用最小二乘法分别建立上述三个模型的回归系数并进行显著性检验 根据显著 性检验指标参数 选择推荐的降雨 径流系数关系形式 进而计算径流量 2 2 区域宏观经济发展预测模型 在产业结构优化调整和生态环境保护的基础上 建立区域宏观经济发展预测模型 分析预测不同水平年宏观经济发展趋势 为水资源需求预测提供基础 4 本项目的宏观经济定量预测模型为成长曲线模型 4 ttabkY exp 0 b 式中 第 年的经济指数t 通过三段法可以计算模型中的 从而确定模型 2 3 水流水质数学模型 2 3 1 水流模型方程 非恒定水流方程 一维水流方程 一维非恒定流动的基本方程为 连续方程 5 ZtBQx 10 动量方程 6 tVFgZxbgVC 222 一维水流方程是发展河网水流水质数学模型的基础 其技术关键是边界条件 尤 其是汊点联接条件的正确采用 2 3 2 定解条件 对于恒定问题 只要给出合适的边界条件即可 对于非恒定问题 因属于初边值问题 既需给出边界条件 还需给出初始 条件 即在计算初始时刻 计算全域给出各待求量的初始值 而且在计算 推进的每一时步 都要给出计算域各待求量的边界值 可以插值给出 需要说明的是 以上方程去掉时变项 即为恒定问题 并可进一步简化得解析解 甚至是箱子模式 对于简单问题的计算 当没有现成的数学模型时 完全可以采用 EXCEL 电子表格 4 技术完成 但在进行多方案 计算多达数十上百组次 的水资源配 置中 建议还是采用数学模型更为有效 2 4 水资源配置数学模型 水资源配置 3 是水资源综合规划的重点 它是指在流域或特定的区域范围内 遵循 高效 公平和可持续的原则 通过各种工程与非工程措施 考虑市场经济的规律和资 源配置准则 通过合理抑制要求 有效增加供水 积极保护生态环境等手段和措施 对多种可利用的水资源在区域间和各用水部门间进行的调配 5 1 水资源系统的分解 协调结构模型 将整个系统划分为若干个子系统 对各子系统进行调节计算 求出子系统的盈亏 水量 然后从整个区域出发 对各子系统的计算成果进行总体协调 以求得全局最优 解 1 子系统优化模型 子系统优化的目的在于根据各子系统内的水源和工程条件 以及系统内控制区域的生产 生活和生态需水量 进行择优计算 使各子系统的亏水 度最小 2 全系统协调模型 通过上述模型的优化计算 得出各子系统的盈亏水量 对各子系统的盈亏水量进 行全系统的优化计算 目标函数是整个系统的亏水度最小 2 系统概化 为了进行水资源配置 需要按流域或区域提出水资源系统供需网络图 或称系统 节点网络图 系统供需网络图除包括以基本计算分区和城市构成的用水节点外 还包 括以水库 湖泊 河流分水工程 调水工程 入流节点等组成水源节点 以渠系作为 供水网络形成的地表水供水系统 按供水网络考虑输水损失 此外还包括当地水资源 的开发潜力 包括中小型水库 塘坝等 按 50 75 和 95 不同降水频率给出 污 水处理再利用 集雨工程利用 海水利用等组成其他供水方式 在上述供水中 地下 水供水方式和供水量按现状开采量考虑 这样将各计算分区地表水之间按地理关系和 水力联系相互连结后 形成流域或区域的系统节点网络图 在系统节点网络图中 对 于某一个计算分区 可能有若干个供水工程供水 也可能由一个水源向几个计算分区 供水 计算分区相互之间有来水和出水关系 供水工程之间有上下游关系 3 子系统水资源优化配置模型 阶段变量 t 以 t 为阶段变量 为时段总数 Ntt 1 状态变量 以第 i 子系统第 j 水库第 t 时段末水库 河道或外来水的蓄水 jiS 量为状态变量 决策变量 以第 i 子系统第 j 水库第 t 时段水库或河道放水量为决策变量 tjiDR 目标函数 由于各种经济指标难以确定 本项目以子系统的亏水度最小为优化准 6 则 即 12 Nttjji tjiDRtjitjiDjiDtjiSFI1 mn 式中 分别为第 i 子系统第 j 水库第 t 时段水库 或河道 jiRtjiN 实际放水量和需要的放水量 设定 子系统以 i 表示 i 1 Ni 子系统总个数 子系统内的水库以 j 表示 j 1 Nr 子系统内水库总个数 子系统内的用水节点以 k 表示 k 1 Nk 子系统内用水节点总个数 子系统内的入流节点以 m 表示 m 1 Nm 子系统内入流节点总个数 计算时段以 t 表示 t 1 Nt 模拟计算时段总数 计算模型 1 第 i 子系统用水节点 k 需水量计算模型 略 2 入流节点 m 汇流过程计算模型 略 3 水量平衡方程 略 4 控制节点水量平衡 略 约束条件 1 供水水源的供水能力约束 2 供水节点的水量平衡约束 3 各用水区的供水能力约束 4 各用水区的总用水量不能超过分配该区的总供水量 5 水库库容约束 尤其是汛期水位限制 6 水库分水量限制 7 河流或渠道过流能力约束 8 河流或渠道最小流量要求 9 非负约束 4 系统总体优化模型 该模型的目的是在子系统优化配置的基础上 对各子系统盈亏水量进行总体优化 配置 7 目标函数 全系统总亏水度最小为目标函数 即 13 min1 tiDRItiItiDNIiMIFNtti 式中 分别为第 t 时段调配给第 i 子系统的水量和实际亏缺 tR 水量 第 i 子系统的权重系数 i 约束条件 1 可调配水量约束 2 总调配水量平衡 3 工程输水能力约束 3 研究应用 本文以温州市所辖的瑞安市为例介绍模型的应用结果 瑞安市东临东海 是一个 滨海城市 西连文成 南接平阳 北邻温州市瓯海区 龙湾区 西北为青田县 总面 积 4307 9km2 其中海域面积 3037 km2 陆地面积 1270 9km2 雨量丰沛 地势西高东 低 地貌分为西部山区 中部丘陵 东部平原和沿海岛屿四类 限于篇幅 仅将数模 计算的结果列出 1 降雨径流关系模型 规划中采用了径流系数统计分析模型计算区域径流量 经分析比较 建立降雨径 流关系模型为 式中 为径流系数 为降雨量 mm 365 4082 p p 2 区域宏观经济发展预测模型 根据瑞安市 1980 年 2002 年经济指标建立区域经济发展预测模型 并对不同水 平年经济发展进行预测 结果见表 1 表 1 瑞安市不同水平年经济发展预测结果 水平年 2002 年 2010 年 2020 年 2030 年 GDP 亿元 168 3 396 0 1028 1468 8 3 水流水质模型 图 1 给出了瑞安平原河网概化图 由图可知 瑞安平原河网纵横交错 南北为主 8 的干河除了温瑞塘河外 尚有人民河 中塘河 环城河 愚溪等 东西向为主的河网 多达 20 余条 全计算域共布有 208 个断面 上游边界有 A B C D E F G H 等 8 个流量入流口 下游边界有 1 10 个排涝挡潮闸 给出水位边界条件 在计算过程 中 我们发现当排涝闸全开时 各河网断面流向基本上从上游向下游流动 当关闭部 分闸门时 流向就有变化 部分断面呈现反向流 在河网水量调节计算平衡的基础上 以有机污染物 COD 为例 进行了河网水质模拟计算 9 图 1 瑞安平原温瑞塘河及其河网水流水质计算概化图 对于河网水质保护规定 各规划水平年一般应维持其水质状况不劣于现有水质类 别 并控制不超过现状污染物排放量和入河量 对于需要改善水质的保护区 应在 2010 年以前全部达到水功能区水质类别要求 对于需要改善水质的缓冲区 应在 2020 年以前达到水功能区的水质目标要求 温瑞塘河现状水质基本上属于 V 类和劣 V 类 而规划的水环境保护功能区划质量目标为 III 类 基于对温瑞塘河及其河网区的工业废 10 水和城镇生活污水的调查 统计和对不同规划水平年的污水排放量的预测 选用能代 表计算区域有机物污染为主的 COD 污染因子 采用平原河网水流水质数学模型 计算 出各主要工况下的河网 COD 浓度场 对照不同水平年的水质规划目标 通过分析比较 得出温瑞塘河及其河网区的典型工况下的环境容量 进而得出各规划水平年的污染物 排放必须的削减量 计算结果汇总见表 2 表 2 温瑞塘河及其河网 COD 纳污量与削减量 项目 纳污量 t a 削减量 t a 2002 年 COD 纳污量 14270 0 14377 8 2010 年 COD 纳污量 16890 0 16997 8 2020 年 COD 纳污量 18070 0 18177 8 2030 年 COD 纳污量 18270 0 18377 8 对比瑞安平原温瑞塘河及其河网的污染承载量和环境容量可知 按照 2002 年污水 排放和治理现状 温瑞塘河及其河网纳污量 现状就须削减 107 83t a 2010 年 2020 年温瑞塘河的纳污负荷全部超其环境容量的限值 如果不采取有效的治理措施 绝大 多数控制断面的 COD 浓度将严重超标 各条支流的水域功能将不能得到满足 地表水 质将继续恶化 因此 控制和削减的水污染物排放总量势在必行 4 水资源配置模型 按瑞安市流域地表水水系结合供水系统及行政区划等因素将全系统划分为 6 个子 系统 分别是赵山渡以上子系统 陶山平原 I 子系统 金潮港子系统 陶山平原 II 子 系统 高楼溪子系统 马屿平原子系统 瑞平平原子系统 瑞安平原子系统 根据各 子系统的水利工程情况 概化瑞安市水资源配置网络图 见图 2 11 图 2 瑞安市水资源配置概化图 经计算 各子系统的配置结果见表 3 瑞安市的配置结果见表 4 12 表 3 各子系统水资源配置结果 各子系统 亏水度 水平年 保证率 赵山渡以上 金潮港 高楼溪 马屿平原 瑞安平原 瑞平平原 50 1 10 0 0 0 0 0 75 0 80 1 10 0 0 0 30 02010 95 0 90 1 90 0 0 1 00 0 50 1 00 0 00 0 0 0 0 75 1 10 2 00 0 0 0 02020 95 1 40 4 70 0 0 0 0 50 1 20 0 0 0 0 0 75 1 10 0 0 0 0 02030 95 1 10 1 20 0 0 0 0 表 4 瑞安市水资源配置结果 水平年 保证率 亏水度 50 0 75 0 342010 95 0 85 50 0 75 0 232020 95 0 56 50 0 75 02030 95 0 13 4 结语 实例验证表明 在沿海城市水资源规划 保护与管理中 数学模型有用武之地 从降雨产流模型到河网的水流水质模型 再到入海江河的非恒定水流水质模型 无论 在单因素影响研究 多方案模拟 或是水资源的调度管理 数学模型均有很大的优势 具体应用中 可以逐步地从简单到复杂 从单一数学模型到组合数学模型逐渐展开 数学模计算成果达到可视化 在水资源的保护 调度管理中非常有效 通过互联网络 传输 对各级主管部门 决策机构的信息化调控管理 是十分重要的 由于水资源综合规划涉及国民经济各部门 正式开展历时不长 研究的数学模型 也还存在这样那样的问题 目前主要还处于单一模型和准组合模型阶段 离开较完整 的软件包还有不少工作要做 有待进一步完善 13 参考文献 1 国家发改委 水利部 全国水资源综合规划任务书 2001 年 2 水利部水利水电规划设计总院 全国水资源综合规划技术细则 2002 年 3 耿鸿江 Excel 在水文计算中的应用 水资源研究 2004 第三期 pp48 50 4 尤祥瑜 谢新民等 我国水资源配置模型研究现状与展望 中国水利水电科学研究 院 2004 2 卷 2 期 pp131 140
展开阅读全文
相关资源
相关搜索
资源标签